Show commands: SageMath
Rank
The elliptic curves in class 29120.z have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 29120.z do not have complex multiplication.Modular form 29120.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 29120.z
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 29120.z1 | 29120a4 | \([0, 0, 0, -25388, -1482192]\) | \(6903498885921/374712065\) | \(98228519567360\) | \([2]\) | \(65536\) | \(1.4408\) | |
| 29120.z2 | 29120a2 | \([0, 0, 0, -4588, 90288]\) | \(40743095121/10144225\) | \(2659247718400\) | \([2, 2]\) | \(32768\) | \(1.0943\) | |
| 29120.z3 | 29120a1 | \([0, 0, 0, -4268, 107312]\) | \(32798729601/3185\) | \(834928640\) | \([2]\) | \(16384\) | \(0.74770\) | \(\Gamma_0(N)\)-optimal |
| 29120.z4 | 29120a3 | \([0, 0, 0, 11092, 573232]\) | \(575722725759/874680625\) | \(-229292277760000\) | \([2]\) | \(65536\) | \(1.4408\) |