Properties

Label 29120.z
Number of curves $4$
Conductor $29120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29120.z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29120.z do not have complex multiplication.

Modular form 29120.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 3 q^{9} - q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 29120.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29120.z1 29120a4 \([0, 0, 0, -25388, -1482192]\) \(6903498885921/374712065\) \(98228519567360\) \([2]\) \(65536\) \(1.4408\)  
29120.z2 29120a2 \([0, 0, 0, -4588, 90288]\) \(40743095121/10144225\) \(2659247718400\) \([2, 2]\) \(32768\) \(1.0943\)  
29120.z3 29120a1 \([0, 0, 0, -4268, 107312]\) \(32798729601/3185\) \(834928640\) \([2]\) \(16384\) \(0.74770\) \(\Gamma_0(N)\)-optimal
29120.z4 29120a3 \([0, 0, 0, 11092, 573232]\) \(575722725759/874680625\) \(-229292277760000\) \([2]\) \(65536\) \(1.4408\)