Properties

Label 2850.e
Number of curves $4$
Conductor $2850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2850.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2850.e do not have complex multiplication.

Modular form 2850.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} - 4 q^{13} - 2 q^{14} + q^{16} + 2 q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2850.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2850.e1 2850a4 \([1, 1, 0, -1320586125, -18471882009375]\) \(16300610738133468173382620881/2228489100\) \(34820142187500\) \([2]\) \(576000\) \(3.4135\)  
2850.e2 2850a3 \([1, 1, 0, -82536625, -288649002875]\) \(-3979640234041473454886161/1471455901872240\) \(-22991498466753750000\) \([2]\) \(288000\) \(3.0670\)  
2850.e3 2850a2 \([1, 1, 0, -2198625, -1081996875]\) \(75224183150104868881/11219310000000000\) \(175301718750000000000\) \([2]\) \(115200\) \(2.6088\)  
2850.e4 2850a1 \([1, 1, 0, 233375, -92172875]\) \(89962967236397039/287450726400000\) \(-4491417600000000000\) \([2]\) \(57600\) \(2.2623\) \(\Gamma_0(N)\)-optimal