Properties

Label 2850.p
Number of curves $4$
Conductor $2850$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2850.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2850.p do not have complex multiplication.

Modular form 2850.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2850.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2850.p1 2850q3 \([1, 1, 1, -30836088, -65920459719]\) \(207530301091125281552569/805586668007040\) \(12587291687610000000\) \([2]\) \(215040\) \(2.8781\)  
2850.p2 2850q4 \([1, 1, 1, -5844088, 4196148281]\) \(1412712966892699019449/330160465517040000\) \(5158757273703750000000\) \([2]\) \(215040\) \(2.8781\)  
2850.p3 2850q2 \([1, 1, 1, -1956088, -998219719]\) \(52974743974734147769/3152005008998400\) \(49250078265600000000\) \([2, 2]\) \(107520\) \(2.5316\)  
2850.p4 2850q1 \([1, 1, 1, 91912, -64331719]\) \(5495662324535111/117739817533440\) \(-1839684648960000000\) \([4]\) \(53760\) \(2.1850\) \(\Gamma_0(N)\)-optimal