# Properties

 Label 2850.2.a.p Level $2850$ Weight $2$ Character orbit 2850.a Self dual yes Analytic conductor $22.757$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2850.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$22.7573645761$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} + q^{18} - q^{19} + 4 q^{21} - q^{24} - 2 q^{26} - q^{27} - 4 q^{28} + 10 q^{29} + q^{32} + 2 q^{34} + q^{36} - 2 q^{37} - q^{38} + 2 q^{39} + 2 q^{41} + 4 q^{42} + 4 q^{43} - q^{48} + 9 q^{49} - 2 q^{51} - 2 q^{52} + 6 q^{53} - q^{54} - 4 q^{56} + q^{57} + 10 q^{58} + 8 q^{59} + 6 q^{61} - 4 q^{63} + q^{64} - 12 q^{67} + 2 q^{68} + q^{72} + 14 q^{73} - 2 q^{74} - q^{76} + 2 q^{78} + q^{81} + 2 q^{82} + 12 q^{83} + 4 q^{84} + 4 q^{86} - 10 q^{87} + 10 q^{89} + 8 q^{91} - q^{96} - 2 q^{97} + 9 q^{98} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −1.00000 1.00000 0 −1.00000 −4.00000 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.p 1
3.b odd 2 1 8550.2.a.b 1
5.b even 2 1 570.2.a.d 1
5.c odd 4 2 2850.2.d.f 2
15.d odd 2 1 1710.2.a.t 1
20.d odd 2 1 4560.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.a.d 1 5.b even 2 1
1710.2.a.t 1 15.d odd 2 1
2850.2.a.p 1 1.a even 1 1 trivial
2850.2.d.f 2 5.c odd 4 2
4560.2.a.a 1 20.d odd 2 1
8550.2.a.b 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2850))$$:

 $$T_{7} + 4$$ $$T_{11}$$ $$T_{13} + 2$$ $$T_{23}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$1 + T$$
$5$ $$T$$
$7$ $$4 + T$$
$11$ $$T$$
$13$ $$2 + T$$
$17$ $$-2 + T$$
$19$ $$1 + T$$
$23$ $$T$$
$29$ $$-10 + T$$
$31$ $$T$$
$37$ $$2 + T$$
$41$ $$-2 + T$$
$43$ $$-4 + T$$
$47$ $$T$$
$53$ $$-6 + T$$
$59$ $$-8 + T$$
$61$ $$-6 + T$$
$67$ $$12 + T$$
$71$ $$T$$
$73$ $$-14 + T$$
$79$ $$T$$
$83$ $$-12 + T$$
$89$ $$-10 + T$$
$97$ $$2 + T$$