Properties

Label 278080.bm
Number of curves $4$
Conductor $278080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 278080.bm have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 278080.bm do not have complex multiplication.

Modular form 278080.2.a.bm

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - q^{11} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 278080.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
278080.bm1 278080bm3 \([0, 0, 0, -524588, 146120912]\) \(121806044811730242/117823995025\) \(15443426675916800\) \([4]\) \(2228224\) \(2.0273\)  
278080.bm2 278080bm4 \([0, 0, 0, -356588, -81171888]\) \(38257268424094242/423358789975\) \(55490483319603200\) \([2]\) \(2228224\) \(2.0273\)  
278080.bm3 278080bm2 \([0, 0, 0, -40588, 1114512]\) \(112833156224484/57109050625\) \(3742698741760000\) \([2, 2]\) \(1114112\) \(1.6807\)  
278080.bm4 278080bm1 \([0, 0, 0, 9412, 134512]\) \(5627940902064/3733984375\) \(-61177600000000\) \([2]\) \(557056\) \(1.3342\) \(\Gamma_0(N)\)-optimal