Show commands: SageMath
Rank
The elliptic curves in class 26928.j have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 26928.j do not have complex multiplication.Modular form 26928.2.a.j
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 26928.j
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 26928.j1 | 26928be4 | \([0, 0, 0, -202211571, -1106769336910]\) | \(306234591284035366263793/1727485056\) | \(5158242737455104\) | \([2]\) | \(2064384\) | \(3.0847\) | |
| 26928.j2 | 26928be2 | \([0, 0, 0, -12638451, -17292616270]\) | \(74768347616680342513/5615307472896\) | \(16767218269147889664\) | \([2, 2]\) | \(1032192\) | \(2.7381\) | |
| 26928.j3 | 26928be3 | \([0, 0, 0, -11809011, -19660335694]\) | \(-60992553706117024753/20624795251201152\) | \(-61585308623362620653568\) | \([2]\) | \(2064384\) | \(3.0847\) | |
| 26928.j4 | 26928be1 | \([0, 0, 0, -841971, -232546894]\) | \(22106889268753393/4969545596928\) | \(14838983639697457152\) | \([2]\) | \(516096\) | \(2.3916\) | \(\Gamma_0(N)\)-optimal |