Properties

Label 26928.j
Number of curves $4$
Conductor $26928$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 26928.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 26928.j do not have complex multiplication.

Modular form 26928.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{7} - q^{11} - 2 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 26928.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
26928.j1 26928be4 \([0, 0, 0, -202211571, -1106769336910]\) \(306234591284035366263793/1727485056\) \(5158242737455104\) \([2]\) \(2064384\) \(3.0847\)  
26928.j2 26928be2 \([0, 0, 0, -12638451, -17292616270]\) \(74768347616680342513/5615307472896\) \(16767218269147889664\) \([2, 2]\) \(1032192\) \(2.7381\)  
26928.j3 26928be3 \([0, 0, 0, -11809011, -19660335694]\) \(-60992553706117024753/20624795251201152\) \(-61585308623362620653568\) \([2]\) \(2064384\) \(3.0847\)  
26928.j4 26928be1 \([0, 0, 0, -841971, -232546894]\) \(22106889268753393/4969545596928\) \(14838983639697457152\) \([2]\) \(516096\) \(2.3916\) \(\Gamma_0(N)\)-optimal