Properties

Label 267589.e
Number of curves $1$
Conductor $267589$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 267589.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(43\)\(1 - T\)
\(127\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 267589.e do not have complex multiplication.

Modular form 267589.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} - q^{4} - 2 q^{5} - 3 q^{6} - 3 q^{8} + 6 q^{9} - 2 q^{10} + 2 q^{11} + 3 q^{12} + 4 q^{13} + 6 q^{15} - q^{16} - 4 q^{17} + 6 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 267589.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
267589.e1 267589e1 \([1, -1, 0, -1633, 25654]\) \(1404551713599/10097389\) \(3463404427\) \([]\) \(249984\) \(0.66236\) \(\Gamma_0(N)\)-optimal