Show commands: SageMath
Rank
The elliptic curves in class 262080ec have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 262080ec do not have complex multiplication.Modular form 262080.2.a.ec
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 262080ec
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 262080.ec4 | 262080ec1 | \([0, 0, 0, -16428, 188368]\) | \(2565726409/1404585\) | \(268420373544960\) | \([2]\) | \(1048576\) | \(1.4594\) | \(\Gamma_0(N)\)-optimal |
| 262080.ec2 | 262080ec2 | \([0, 0, 0, -157548, -23914928]\) | \(2263054145689/16769025\) | \(3204610582118400\) | \([2, 2]\) | \(2097152\) | \(1.8059\) | |
| 262080.ec3 | 262080ec3 | \([0, 0, 0, -56748, -54114608]\) | \(-105756712489/6558605235\) | \(-1253368978817679360\) | \([2]\) | \(4194304\) | \(2.1525\) | |
| 262080.ec1 | 262080ec4 | \([0, 0, 0, -2516268, -1536326192]\) | \(9219915604149769/511875\) | \(97820835840000\) | \([2]\) | \(4194304\) | \(2.1525\) |