Further refine search

Results (displaying matches 1-50 of at least 1000) Next

Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass Coefficients Rank Torsion structure
262080.a1 262080a1 262080.a 262080a [0, 0, 0, -948, -1888] 2 [2]
262080.a2 262080a2 262080.a 262080a [0, 0, 0, 3732, -14992] 2 [2]
262080.b1 262080b4 262080.b 262080b [0, 0, 0, -80991468, 280547898192] 0 [2]
262080.b2 262080b3 262080.b 262080b [0, 0, 0, -5063148, 4381412688] 0 [2]
262080.b3 262080b2 262080.b 262080b [0, 0, 0, -1023468, 365741392] 0 [2]
262080.b4 262080b1 262080.b 262080b [0, 0, 0, -224748, -34577072] 0 [2]
262080.c1 262080c3 262080.c 262080c [0, 0, 0, -29648748, -62138026928] 1 [2]
262080.c2 262080c4 262080.c 262080c [0, 0, 0, -29487468, -62847465392] 1 [2]
262080.c3 262080c1 262080.c 262080c [0, 0, 0, -436908, -49912112] 1 [2]
262080.c4 262080c2 262080.c 262080c [0, 0, 0, 1538772, -376294448] 1 [2]
262080.d1 262080d1 262080.d 262080d [0, 0, 0, -167268, 26104192] 1 [2]
262080.d2 262080d2 262080.d 262080d [0, 0, 0, -43788, 63790288] 1 [2]
262080.e1 262080e1 262080.e 262080e [0, 0, 0, -19525068, -30560756112] 0 [2]
262080.e2 262080e2 262080.e 262080e [0, 0, 0, 21762612, -142582489488] 0 [2]
262080.f1 262080f2 262080.f 262080f [0, 0, 0, -658908, 205026768] 2 [2]
262080.f2 262080f1 262080.f 262080f [0, 0, 0, -20088, 6481512] 2 [2]
262080.g1 262080g2 262080.g 262080g [0, 0, 0, -5508, 153792] 1 [2]
262080.g2 262080g1 262080.g 262080g [0, 0, 0, -783, -4968] 1 [2]
262080.h1 262080h1 262080.h 262080h [0, 0, 0, -2551188, 1568417888] 1 [2]
262080.h2 262080h2 262080.h 262080h [0, 0, 0, -2546508, 1574458832] 1 [2]
262080.i1 262080i1 262080.i 262080i [0, 0, 0, -17148, 799472] 0 [2]
262080.i2 262080i2 262080.i 262080i [0, 0, 0, 18132, 3664208] 0 [2]
262080.j1 262080j2 262080.j 262080j [0, 0, 0, -43788, 3523088] 1 [2]
262080.j2 262080j1 262080.j 262080j [0, 0, 0, -3468, 23312] 1 [2]
262080.k1 262080k1 262080.k 262080k [0, 0, 0, -32763, -2051012] 1 [2]
262080.k2 262080k2 262080.k 262080k [0, 0, 0, 44412, -10262432] 1 [2]
262080.l1 262080l3 262080.l 262080l [0, 0, 0, -757876908, 8030383101232] 1 [2]
262080.l2 262080l2 262080.l 262080l [0, 0, 0, -49212588, 115169578288] 1 [2, 2]
262080.l3 262080l1 262080.l 262080l [0, 0, 0, -13085868, -16432837328] 1 [2]
262080.l4 262080l4 262080.l 262080l [0, 0, 0, 81424212, 622510654768] 1 [2]
262080.m1 262080m3 262080.m 262080m [0, 0, 0, -31008108, 66451951568] 0 [2]
262080.m2 262080m4 262080.m 262080m [0, 0, 0, -12643788, -16645282288] 0 [2]
262080.m3 262080m2 262080.m 262080m [0, 0, 0, -2113788, 838729712] 0 [2, 2]
262080.m4 262080m1 262080.m 262080m [0, 0, 0, 350232, 86710808] 0 [2]
262080.n1 262080n4 262080.n 262080n [0, 0, 0, -62807148, -191579351472] 0 [2]
262080.n2 262080n2 262080.n 262080n [0, 0, 0, -4101228, -2710665648] 0 [2, 2]
262080.n3 262080n1 262080.n 262080n [0, 0, 0, -1152108, 435455568] 0 [2]
262080.n4 262080n3 262080.n 262080n [0, 0, 0, 7418772, -15193737648] 0 [2]
262080.o1 262080o4 262080.o 262080o [0, 0, 0, -606828, -181940848] 1 [2]
262080.o2 262080o2 262080.o 262080o [0, 0, 0, -39828, -2542048] 1 [2, 2]
262080.o3 262080o1 262080.o 262080o [0, 0, 0, -11703, 450452] 1 [2]
262080.o4 262080o3 262080.o 262080o [0, 0, 0, 77172, -14663248] 1 [2]
262080.p1 262080p4 262080.p 262080p [0, 0, 0, -51611628, -142714943152] 0 [2]
262080.p2 262080p2 262080.p 262080p [0, 0, 0, -3227628, -2227160752] 0 [2, 2]
262080.p3 262080p3 262080.p 262080p [0, 0, 0, -2029548, -3901118128] 0 [2]
262080.p4 262080p1 262080.p 262080p [0, 0, 0, -278508, -5883568] 0 [2]
262080.q1 262080q3 262080.q 262080q [0, 0, 0, -190627190508, 19913364837077168] 1 [2]
262080.q2 262080q2 262080.q 262080q [0, 0, 0, -80578750188, -8577163916119888] 1 [2, 2]
262080.q3 262080q1 262080.q 262080q [0, 0, 0, -80000722668, -8709408057888592] 1 [2]
262080.q4 262080q4 262080.q 262080q [0, 0, 0, 20221249812, -28604067596119888] 1 [2]
Next

In order to download results, determine the number of results.