Properties

Label 262080.lo
Number of curves $4$
Conductor $262080$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("lo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 262080.lo have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 262080.lo do not have complex multiplication.

Modular form 262080.2.a.lo

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 262080.lo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
262080.lo1 262080lo4 \([0, 0, 0, -175692, -28342064]\) \(25107427013768/2985255\) \(71311389327360\) \([2]\) \(1310720\) \(1.6834\)  
262080.lo2 262080lo2 \([0, 0, 0, -11892, -365024]\) \(62287505344/16769025\) \(50072040345600\) \([2, 2]\) \(655360\) \(1.3368\)  
262080.lo3 262080lo1 \([0, 0, 0, -4287, 103444]\) \(186756901696/8996715\) \(419750735040\) \([2]\) \(327680\) \(0.99026\) \(\Gamma_0(N)\)-optimal
262080.lo4 262080lo3 \([0, 0, 0, 30228, -2369936]\) \(127871714872/175573125\) \(-4194068336640000\) \([2]\) \(1310720\) \(1.6834\)