Properties

Label 262080.gp
Number of curves $4$
Conductor $262080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 262080.gp have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 262080.gp do not have complex multiplication.

Modular form 262080.2.a.gp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} + 4 q^{11} + q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 262080.gp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
262080.gp1 262080gp3 \([0, 0, 0, -62807148, 191579351472]\) \(143378317900125424089/4976562500000\) \(951035904000000000000\) \([2]\) \(23592960\) \(3.1160\)  
262080.gp2 262080gp2 \([0, 0, 0, -4101228, 2710665648]\) \(39920686684059609/6492304000000\) \(1240698615496704000000\) \([2, 2]\) \(11796480\) \(2.7694\)  
262080.gp3 262080gp1 \([0, 0, 0, -1152108, -435455568]\) \(884984855328729/83492864000\) \(15955734785163264000\) \([2]\) \(5898240\) \(2.4228\) \(\Gamma_0(N)\)-optimal
262080.gp4 262080gp4 \([0, 0, 0, 7418772, 15193737648]\) \(236293804275620391/658593925444000\) \(-125859259127870521344000\) \([2]\) \(23592960\) \(3.1160\)