Properties

Label 262080.fg
Number of curves $4$
Conductor $262080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 262080.fg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 262080.fg do not have complex multiplication.

Modular form 262080.2.a.fg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 262080.fg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
262080.fg1 262080fg4 \([0, 0, 0, -8449068, 9452649008]\) \(349046010201856969/7245875000\) \(1384708276224000000\) \([2]\) \(7962624\) \(2.5997\)  
262080.fg2 262080fg3 \([0, 0, 0, -546348, 136922672]\) \(94376601570889/12235496000\) \(2338239698436096000\) \([2]\) \(3981312\) \(2.2532\)  
262080.fg3 262080fg2 \([0, 0, 0, -174828, -6656848]\) \(3092354182009/1689383150\) \(322846147569254400\) \([2]\) \(2654208\) \(2.0504\)  
262080.fg4 262080fg1 \([0, 0, 0, -134508, -18962512]\) \(1408317602329/2153060\) \(411456173506560\) \([2]\) \(1327104\) \(1.7039\) \(\Gamma_0(N)\)-optimal