Show commands: SageMath
Rank
The elliptic curves in class 262080.fg have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 262080.fg do not have complex multiplication.Modular form 262080.2.a.fg
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 262080.fg
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 262080.fg1 | 262080fg4 | \([0, 0, 0, -8449068, 9452649008]\) | \(349046010201856969/7245875000\) | \(1384708276224000000\) | \([2]\) | \(7962624\) | \(2.5997\) | |
| 262080.fg2 | 262080fg3 | \([0, 0, 0, -546348, 136922672]\) | \(94376601570889/12235496000\) | \(2338239698436096000\) | \([2]\) | \(3981312\) | \(2.2532\) | |
| 262080.fg3 | 262080fg2 | \([0, 0, 0, -174828, -6656848]\) | \(3092354182009/1689383150\) | \(322846147569254400\) | \([2]\) | \(2654208\) | \(2.0504\) | |
| 262080.fg4 | 262080fg1 | \([0, 0, 0, -134508, -18962512]\) | \(1408317602329/2153060\) | \(411456173506560\) | \([2]\) | \(1327104\) | \(1.7039\) | \(\Gamma_0(N)\)-optimal |