Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-13x+21\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-13xz^2+21z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1080x+12096\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3, 0)$ | $0$ | $2$ |
Integral points
\( \left(3, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 256 \) | = | $2^{8}$ |
|
| Discriminant: | $\Delta$ | = | $32768$ | = | $2^{15} $ |
|
| j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.40397265035989411975627760561$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177574$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.495723035582761$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $3.5623007922266199348181877138$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.7811503961133099674090938569 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.781150396 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.562301 \cdot 1.000000 \cdot 2}{2^2} \\ & \approx 1.781150396\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 16 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | -1 | 8 | 15 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.192.5.602 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 256.d
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256.a2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-1024.1-d4 |
| $4$ | \(\Q(\zeta_{16})^+\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.6144.2 | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.18432.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.67108864.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.67108864.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.339738624.9 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.150994944.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.1358954496.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.169075682574336.3 | \(\Z/18\Z\) | not in database |
| $16$ | 16.0.18014398509481984.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.1846757322198614016.7 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.364791569817010176.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | 16.8.29548117155177824256.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $20$ | 20.0.84954018740373771557797888.1 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 |
|---|---|
| Reduction type | add |
| $\lambda$-invariant(s) | - |
| $\mu$-invariant(s) | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.