⌂
→
Elliptic curves
→
$\Q$
→
256
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 256
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (8 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
256.a1
256a2
256.a
256a
$2$
$2$
\( 2^{8} \)
\( 2^{15} \)
$1$
$\Z/2\Z$
$\Q(\sqrt{-2})$
$-8$
$N(\mathrm{U}(1))$
✓
$2$
16.192.5.624
2B
$0.960251595$
$1$
$5$
$16$
$-0.403973$
$8000$
$0.90298$
$3.49572$
$[0, 1, 0, -13, -21]$
\(y^2=x^3+x^2-13x-21\)
$[(5, 8)]$
256.a2
256a1
256.a
256a
$2$
$2$
\( 2^{8} \)
\( 2^{9} \)
$1$
$\Z/2\Z$
$\Q(\sqrt{-2})$
$-8$
$N(\mathrm{U}(1))$
✓
$2$
16.192.5.607
2B
$0.480125797$
$1$
$7$
$8$
$-0.750546$
$8000$
$0.90298$
$2.74572$
$[0, 1, 0, -3, 1]$
\(y^2=x^3+x^2-3x+1\)
$[(0, 1)]$
256.b1
256b1
256.b
256b
$2$
$2$
\( 2^{8} \)
\( 2^{9} \)
$1$
$\Z/2\Z$
$\Q(\sqrt{-1})$
$-4$
$N(\mathrm{U}(1))$
✓
$2$
16.384.9.831
2B
$0.608709031$
$1$
$7$
$8$
$-0.790672$
$1728$
$2.46936$
$[0, 0, 0, -2, 0]$
\(y^2=x^3-2x\)
$[(2, 2)]$
256.b2
256b2
256.b
256b
$2$
$2$
\( 2^{8} \)
\( - 2^{15} \)
$1$
$\Z/2\Z$
$\Q(\sqrt{-1})$
$-4$
$N(\mathrm{U}(1))$
✓
$2$
16.384.9.819
2B
$1.217418063$
$1$
$5$
$16$
$-0.444099$
$1728$
$3.21936$
$[0, 0, 0, 8, 0]$
\(y^2=x^3+8x\)
$[(1, 3)]$
256.c1
256c2
256.c
256c
$2$
$2$
\( 2^{8} \)
\( 2^{15} \)
$0$
$\Z/2\Z$
$\Q(\sqrt{-1})$
$-4$
$N(\mathrm{U}(1))$
✓
$2$
16.384.9.829
2B
$1$
$1$
$1$
$16$
$-0.444099$
$1728$
$3.21936$
$[0, 0, 0, -8, 0]$
\(y^2=x^3-8x\)
$[]$
256.c2
256c1
256.c
256c
$2$
$2$
\( 2^{8} \)
\( - 2^{9} \)
$0$
$\Z/2\Z$
$\Q(\sqrt{-1})$
$-4$
$N(\mathrm{U}(1))$
✓
$2$
16.384.9.817
2B
$1$
$1$
$1$
$8$
$-0.790672$
$1728$
$2.46936$
$[0, 0, 0, 2, 0]$
\(y^2=x^3+2x\)
$[]$
256.d1
256d2
256.d
256d
$2$
$2$
\( 2^{8} \)
\( 2^{15} \)
$0$
$\Z/2\Z$
$\Q(\sqrt{-2})$
$-8$
$N(\mathrm{U}(1))$
✓
$2$
16.192.5.602
2B
$1$
$1$
$1$
$16$
$-0.403973$
$8000$
$0.90298$
$3.49572$
$[0, -1, 0, -13, 21]$
\(y^2=x^3-x^2-13x+21\)
$[]$
256.d2
256d1
256.d
256d
$2$
$2$
\( 2^{8} \)
\( 2^{9} \)
$0$
$\Z/2\Z$
$\Q(\sqrt{-2})$
$-8$
$N(\mathrm{U}(1))$
✓
$2$
16.192.5.617
2B
$1$
$1$
$1$
$8$
$-0.750546$
$8000$
$0.90298$
$2.74572$
$[0, -1, 0, -3, -1]$
\(y^2=x^3-x^2-3x-1\)
$[]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV