Show commands: SageMath
Rank
The elliptic curves in class 254800dq have rank \(2\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 254800dq do not have complex multiplication.Modular form 254800.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 254800dq
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
254800.dq3 | 254800dq1 | \([0, 0, 0, -1307075, 575125250]\) | \(32798729601/3185\) | \(23981572160000000\) | \([2]\) | \(2359296\) | \(2.1788\) | \(\Gamma_0(N)\)-optimal |
254800.dq2 | 254800dq2 | \([0, 0, 0, -1405075, 483887250]\) | \(40743095121/10144225\) | \(76381307329600000000\) | \([2, 2]\) | \(4718592\) | \(2.5254\) | |
254800.dq4 | 254800dq3 | \([0, 0, 0, 3396925, 3072165250]\) | \(575722725759/874680625\) | \(-6585939254440000000000\) | \([2]\) | \(9437184\) | \(2.8719\) | |
254800.dq1 | 254800dq4 | \([0, 0, 0, -7775075, -7943622750]\) | \(6903498885921/374712065\) | \(2821407983051840000000\) | \([2]\) | \(9437184\) | \(2.8719\) |