Properties

Label 243360.cy
Number of curves $4$
Conductor $243360$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 243360.cy have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 243360.cy do not have complex multiplication.

Modular form 243360.2.a.cy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 243360.cy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
243360.cy1 243360cy2 \([0, 0, 0, -730587, 240356194]\) \(23937672968/45\) \(81071856253440\) \([2]\) \(2359296\) \(1.9241\)  
243360.cy2 243360cy4 \([0, 0, 0, -122187, -11551826]\) \(111980168/32805\) \(59101383208757760\) \([2]\) \(2359296\) \(1.9241\)  
243360.cy3 243360cy1 \([0, 0, 0, -46137, 3673384]\) \(48228544/2025\) \(456029191425600\) \([2, 2]\) \(1179648\) \(1.5775\) \(\Gamma_0(N)\)-optimal
243360.cy4 243360cy3 \([0, 0, 0, 22308, 13638976]\) \(85184/5625\) \(-81071856253440000\) \([2]\) \(2359296\) \(1.9241\)