Properties

Label 240370.w
Number of curves $4$
Conductor $240370$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 240370.w have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 240370.w do not have complex multiplication.

Modular form 240370.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{10} - 6 q^{11} + 2 q^{12} + q^{13} + 4 q^{14} - 2 q^{15} + q^{16} - 6 q^{17} + q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 240370.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
240370.w1 240370w3 \([1, 1, 1, -383706, 87652199]\) \(988345570681/44994560\) \(284426948990013440\) \([2]\) \(5842368\) \(2.1110\)  
240370.w2 240370w1 \([1, 1, 1, -60131, -5666831]\) \(3803721481/26000\) \(164355439274000\) \([2]\) \(1947456\) \(1.5617\) \(\Gamma_0(N)\)-optimal
240370.w3 240370w2 \([1, 1, 1, -23151, -12515527]\) \(-217081801/10562500\) \(-66769397205062500\) \([2]\) \(3894912\) \(1.9083\)  
240370.w4 240370w4 \([1, 1, 1, 207974, 334264423]\) \(157376536199/7722894400\) \(-48819219291489025600\) \([2]\) \(11684736\) \(2.4576\)