Properties

Label 228800dm
Number of curves $1$
Conductor $228800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 228800dm1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 228800dm do not have complex multiplication.

Modular form 228800.2.a.dm

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 3 q^{7} + 6 q^{9} - q^{11} + q^{13} + q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 228800dm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
228800.d1 228800dm1 \([0, 0, 0, -4890700, 8481094000]\) \(-3158470573163361/5758438400000\) \(-23586563686400000000000\) \([]\) \(28753920\) \(2.9830\) \(\Gamma_0(N)\)-optimal