Properties

Label 228800.dl
Number of curves $4$
Conductor $228800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 228800.dl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 228800.dl do not have complex multiplication.

Modular form 228800.2.a.dl

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} + q^{11} + q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 228800.dl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
228800.dl1 228800ez3 \([0, 0, 0, -23624362700, 1397617294374000]\) \(355995140004443961140387841/2768480\) \(11339694080000000\) \([2]\) \(123863040\) \(4.1026\)  
228800.dl2 228800ez4 \([0, 0, 0, -1479850700, 21734381606000]\) \(87501897507774086005761/815991377947460000\) \(3342300684072796160000000000\) \([2]\) \(123863040\) \(4.1026\)  
228800.dl3 228800ez2 \([0, 0, 0, -1476522700, 21837769254000]\) \(86912881496074271306241/7664481510400\) \(31393716266598400000000\) \([2, 2]\) \(61931520\) \(3.7561\)  
228800.dl4 228800ez1 \([0, 0, 0, -92074700, 342829606000]\) \(-21075830718885163521/199306463150080\) \(-816359273062727680000000\) \([2]\) \(30965760\) \(3.4095\) \(\Gamma_0(N)\)-optimal