Show commands: SageMath
Rank
The elliptic curves in class 21840cl have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 21840cl do not have complex multiplication.Modular form 21840.2.a.cl
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 8 & 8 \\ 8 & 4 & 2 & 8 & 4 & 1 & 2 & 2 \\ 16 & 8 & 4 & 16 & 8 & 2 & 1 & 4 \\ 16 & 8 & 4 & 16 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 21840cl
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 21840.cg7 | 21840cl1 | \([0, 1, 0, -348160, -80234572]\) | \(-1139466686381936641/17587891077120\) | \(-72040001851883520\) | \([2]\) | \(196608\) | \(2.0368\) | \(\Gamma_0(N)\)-optimal |
| 21840.cg5 | 21840cl2 | \([0, 1, 0, -5591040, -5090330700]\) | \(4718909406724749250561/1098974822400\) | \(4501400872550400\) | \([2, 2]\) | \(393216\) | \(2.3834\) | |
| 21840.cg4 | 21840cl3 | \([0, 1, 0, -5611520, -5051181132]\) | \(4770955732122964500481/71987251059360000\) | \(294859780339138560000\) | \([2, 4]\) | \(786432\) | \(2.7300\) | |
| 21840.cg2 | 21840cl4 | \([0, 1, 0, -89456640, -325691746380]\) | \(19328649688935739391016961/1048320\) | \(4293918720\) | \([2]\) | \(786432\) | \(2.7300\) | |
| 21840.cg6 | 21840cl5 | \([0, 1, 0, -531200, -13852327500]\) | \(-4047051964543660801/20235220197806250000\) | \(-82883461930214400000000\) | \([4]\) | \(1572864\) | \(3.0766\) | |
| 21840.cg3 | 21840cl6 | \([0, 1, 0, -11019520, 6255865268]\) | \(36128658497509929012481/16775330746084419600\) | \(68711754735961782681600\) | \([2, 4]\) | \(1572864\) | \(3.0766\) | |
| 21840.cg8 | 21840cl7 | \([0, 1, 0, 38921280, 47267250228]\) | \(1591934139020114746758719/1156766383092650262660\) | \(-4738115105147495475855360\) | \([4]\) | \(3145728\) | \(3.4231\) | |
| 21840.cg1 | 21840cl8 | \([0, 1, 0, -147488320, 688981977908]\) | \(86623684689189325642735681/56690726941459561860\) | \(232205217552218365378560\) | \([4]\) | \(3145728\) | \(3.4231\) |