Properties

Label 218400dz
Number of curves $4$
Conductor $218400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 218400dz have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 218400dz do not have complex multiplication.

Modular form 218400.2.a.dz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 218400dz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
218400.do3 218400dz1 \([0, 1, 0, -9758, 169488]\) \(102766285504/46580625\) \(46580625000000\) \([2, 2]\) \(589824\) \(1.3178\) \(\Gamma_0(N)\)-optimal
218400.do1 218400dz2 \([0, 1, 0, -131633, 18328863]\) \(3941317078336/2340975\) \(149822400000000\) \([2]\) \(1179648\) \(1.6644\)  
218400.do4 218400dz3 \([0, 1, 0, 33992, 1306988]\) \(542939080312/404852175\) \(-3238817400000000\) \([2]\) \(1179648\) \(1.6644\)  
218400.do2 218400dz4 \([0, 1, 0, -78008, -8293512]\) \(6562309703048/106640625\) \(853125000000000\) \([2]\) \(1179648\) \(1.6644\)