Properties

Label 214896.cl
Number of curves $2$
Conductor $214896$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 214896.cl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 214896.cl do not have complex multiplication.

Modular form 214896.2.a.cl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} - 4 q^{13} + 2 q^{15} - 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 214896.cl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
214896.cl1 214896cb2 \([0, 1, 0, -161212, 1128092]\) \(1021697727568/589929813\) \(267544742258711808\) \([2]\) \(2211840\) \(2.0335\)  
214896.cl2 214896cb1 \([0, 1, 0, 40253, 161060]\) \(254467069952/147593259\) \(-4183527384116784\) \([2]\) \(1105920\) \(1.6869\) \(\Gamma_0(N)\)-optimal