Properties

Label 214200bk
Number of curves $1$
Conductor $214200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 214200bk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 214200bk do not have complex multiplication.

Modular form 214200.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 5 q^{11} - 4 q^{13} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 214200bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
214200.ev1 214200bk1 \([0, 0, 0, -75, 1195]\) \(-160000/2023\) \(-589906800\) \([]\) \(87552\) \(0.36469\) \(\Gamma_0(N)\)-optimal