Properties

Label 213282.p
Number of curves $1$
Conductor $213282$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 213282.p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(17\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 213282.p do not have complex multiplication.

Modular form 213282.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 3 q^{7} - q^{8} - q^{10} - q^{11} - 2 q^{13} + 3 q^{14} + q^{16} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 213282.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
213282.p1 213282bm1 \([1, -1, 0, -819, -9099]\) \(-288568081/10496\) \(-2211307776\) \([]\) \(103680\) \(0.56453\) \(\Gamma_0(N)\)-optimal