Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-2681x-53655\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-2681xz^2-53655z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3474603x-2492903898\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-30, 15)$ | $0$ | $2$ |
Integral points
\( \left(-30, 15\right) \)
Invariants
Conductor: | $N$ | = | \( 210 \) | = | $2 \cdot 3 \cdot 5 \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $2058000$ | = | $2^{4} \cdot 3 \cdot 5^{3} \cdot 7^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{2131200347946769}{2058000} \) | = | $2^{-4} \cdot 3^{-1} \cdot 5^{-3} \cdot 7^{-3} \cdot 11^{3} \cdot 11699^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.50587883247597944940871047924$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.50587883247597944940871047924$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0154047869543323$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.600851311999333$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.66347495345184964626608375543$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot1\cdot1\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.9904248603555489387982512663 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.990424860 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.663475 \cdot 1.000000 \cdot 12}{2^2} \\ & \approx 1.990424860\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 144 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.12 |
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 15 & 106 \\ 374 & 11 \end{array}\right),\left(\begin{array}{rr} 352 & 21 \\ 555 & 466 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 576 & 713 \\ 311 & 594 \end{array}\right),\left(\begin{array}{rr} 217 & 24 \\ 114 & 511 \end{array}\right),\left(\begin{array}{rr} 496 & 3 \\ 261 & 754 \end{array}\right),\left(\begin{array}{rr} 817 & 24 \\ 816 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 249 & 388 \\ 500 & 629 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$185794560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
$3$ | split multiplicative | $4$ | \( 2 \) |
$5$ | nonsplit multiplicative | $6$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 210a
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | 2.0.7.1-6300.2-d7 |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | 2.0.3.1-14700.2-h7 |
$3$ | 3.1.972.2 | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.0.2834352.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.121522842000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.324060912.5 | \(\Z/12\Z\) | not in database |
$6$ | 6.0.354294000.5 | \(\Z/12\Z\) | not in database |
$8$ | 8.4.343064484000000.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.108425318400.7 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.2286144000000.51 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.121550625.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.0.534337179648949785803896687500000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | split | split | nonsplit | split |
$\lambda$-invariant(s) | 2 | 1 | 0 | 1 |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.