Properties

Label 20800.b
Number of curves $1$
Conductor $20800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 20800.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20800.b do not have complex multiplication.

Modular form 20800.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 6 q^{9} - 3 q^{11} + q^{13} + 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 20800.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20800.b1 20800dj1 \([0, 0, 0, -1420, -20720]\) \(-48317985/338\) \(-2215116800\) \([]\) \(23040\) \(0.62665\) \(\Gamma_0(N)\)-optimal