Properties

Label 204490.db
Number of curves $2$
Conductor $204490$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("db1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 204490.db have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 204490.db do not have complex multiplication.

Modular form 204490.2.a.db

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{10} + 2 q^{12} + 4 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 204490.db

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
204490.db1 204490br2 \([1, 1, 1, -2249816, 844100863]\) \(147281603041/49156250\) \(420334434016546156250\) \([2]\) \(11612160\) \(2.6599\)  
204490.db2 204490br1 \([1, 1, 1, 408554, 91250479]\) \(881974079/929500\) \(-7948142025040145500\) \([2]\) \(5806080\) \(2.3133\) \(\Gamma_0(N)\)-optimal