Properties

Label 204490.b
Number of curves $4$
Conductor $204490$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 204490.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 204490.b do not have complex multiplication.

Modular form 204490.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - q^{5} + 2 q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{12} + 4 q^{14} + 2 q^{15} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 204490.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
204490.b1 204490by3 \([1, 0, 1, -4243594, 3229307772]\) \(988345570681/44994560\) \(384747878681216061440\) \([2]\) \(13063680\) \(2.7119\)  
204490.b2 204490by1 \([1, 0, 1, -665019, -207555658]\) \(3803721481/26000\) \(222325651050074000\) \([2]\) \(4354560\) \(2.1626\) \(\Gamma_0(N)\)-optimal
204490.b3 204490by2 \([1, 0, 1, -256039, -459978114]\) \(-217081801/10562500\) \(-90319795739092562500\) \([2]\) \(8709120\) \(2.5091\)  
204490.b4 204490by4 \([1, 0, 1, 2300086, 12290995836]\) \(157376536199/7722894400\) \(-66038366364268100545600\) \([2]\) \(26127360\) \(3.0584\)