Show commands: SageMath
Rank
The elliptic curves in class 203840dn have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 203840dn do not have complex multiplication.Modular form 203840.2.a.dn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 203840dn
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 203840.k1 | 203840dn1 | \([0, 1, 0, -9603841, -11459937441]\) | \(-7626453723007966609/921488588800\) | \(-11836572526496972800\) | \([]\) | \(7299072\) | \(2.6842\) | \(\Gamma_0(N)\)-optimal |
| 203840.k2 | 203840dn2 | \([0, 1, 0, 1291519, -35509208225]\) | \(18547687612920431/42417997492000000\) | \(-544861553192599552000000\) | \([]\) | \(21897216\) | \(3.2335\) |