Properties

Label 203840.da
Number of curves $4$
Conductor $203840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("da1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 203840.da have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 203840.da do not have complex multiplication.

Modular form 203840.2.a.da

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} + 4 q^{11} - q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 203840.da

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
203840.da1 203840bw4 \([0, 0, 0, -341950028, -2433767316848]\) \(143378317900125424089/4976562500000\) \(153482061824000000000000\) \([2]\) \(35389440\) \(3.5396\)  
203840.da2 203840bw2 \([0, 0, 0, -22328908, -34435493232]\) \(39920686684059609/6492304000000\) \(200229014286106624000000\) \([2, 2]\) \(17694720\) \(3.1931\)  
203840.da3 203840bw1 \([0, 0, 0, -6272588, 5531898512]\) \(884984855328729/83492864000\) \(2575001703346601984000\) \([2]\) \(8847360\) \(2.8465\) \(\Gamma_0(N)\)-optimal
203840.da4 203840bw3 \([0, 0, 0, 40391092, -193016741232]\) \(236293804275620391/658593925444000\) \(-20311681724464799678464000\) \([2]\) \(35389440\) \(3.5396\)