Properties

Label 198550cc
Number of curves $1$
Conductor $198550$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198550cc1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198550cc do not have complex multiplication.

Modular form 198550.2.a.cc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 4 q^{7} - q^{8} - 2 q^{9} - q^{11} - q^{12} - 4 q^{13} + 4 q^{14} + q^{16} + 3 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198550cc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198550.k1 198550cc1 \([1, 1, 0, 50, 350]\) \(59375/242\) \(-54601250\) \([]\) \(59616\) \(0.16728\) \(\Gamma_0(N)\)-optimal