Properties

Label 198550.y
Number of curves $1$
Conductor $198550$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198550.y1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198550.y do not have complex multiplication.

Modular form 198550.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - 3 q^{9} + q^{11} - 7 q^{13} - 4 q^{14} + q^{16} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198550.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198550.y1 198550cq1 \([1, -1, 0, 7333, 216741]\) \(21414159/22528\) \(-45872992000000\) \([]\) \(633600\) \(1.3081\) \(\Gamma_0(N)\)-optimal