Properties

Label 1950n
Number of curves $4$
Conductor $1950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1950n have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1950n do not have complex multiplication.

Modular form 1950.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} + q^{9} - q^{12} - q^{13} - 2 q^{14} + q^{16} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1950n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.o4 1950n1 \([1, 1, 1, 99937, 499781]\) \(7064514799444439/4094064000000\) \(-63969750000000000\) \([2]\) \(17280\) \(1.9142\) \(\Gamma_0(N)\)-optimal
1950.o3 1950n2 \([1, 1, 1, -400063, 3499781]\) \(453198971846635561/261896250564000\) \(4092128915062500000\) \([2]\) \(34560\) \(2.2608\)  
1950.o2 1950n3 \([1, 1, 1, -1334438, -640581469]\) \(-16818951115904497561/1592332281446400\) \(-24880191897600000000\) \([2]\) \(51840\) \(2.4635\)  
1950.o1 1950n4 \([1, 1, 1, -21814438, -39224901469]\) \(73474353581350183614361/576510977802240\) \(9007984028160000000\) \([2]\) \(103680\) \(2.8101\)