Properties

Label 190400.dv
Number of curves $1$
Conductor $190400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 190400.dv1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 190400.dv do not have complex multiplication.

Modular form 190400.2.a.dv

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{7} + q^{9} + 2 q^{11} - 5 q^{13} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 190400.dv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
190400.dv1 190400el1 \([0, -1, 0, 97, 677]\) \(12487168/34391\) \(-275128000\) \([]\) \(59904\) \(0.30296\) \(\Gamma_0(N)\)-optimal