Properties

Label 185130en
Number of curves $2$
Conductor $185130$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("en1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 185130en have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 185130en do not have complex multiplication.

Modular form 185130.2.a.en

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 2 q^{7} - q^{8} + q^{10} + 6 q^{13} - 2 q^{14} + q^{16} + q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 185130en

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
185130.bb1 185130en1 \([1, -1, 0, -8190, 249156]\) \(47045881/6800\) \(8781982189200\) \([2]\) \(537600\) \(1.2090\) \(\Gamma_0(N)\)-optimal
185130.bb2 185130en2 \([1, -1, 0, 13590, 1333800]\) \(214921799/722500\) \(-933085607602500\) \([2]\) \(1075200\) \(1.5555\)