Show commands: SageMath
Rank
The elliptic curves in class 18496p have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 18496p do not have complex multiplication.Modular form 18496.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 18496p
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
18496.o1 | 18496p1 | \([0, -1, 0, -5009, -53647]\) | \(35152/17\) | \(6722988818432\) | \([2]\) | \(36864\) | \(1.1550\) | \(\Gamma_0(N)\)-optimal |
18496.o2 | 18496p2 | \([0, -1, 0, 18111, -428191]\) | \(415292/289\) | \(-457163239653376\) | \([2]\) | \(73728\) | \(1.5016\) |