Properties

Label 184093.l
Number of curves $2$
Conductor $184093$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 184093.l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 184093.l do not have complex multiplication.

Modular form 184093.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 3 q^{8} - 3 q^{9} + 3 q^{11} + q^{13} - q^{16} - 3 q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 184093.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
184093.l1 184093k1 \([1, -1, 0, -1517882, -719552051]\) \(-56723625/13\) \(-88637455575885853\) \([]\) \(1848000\) \(2.2435\) \(\Gamma_0(N)\)-optimal
184093.l2 184093k2 \([1, -1, 0, 8890453, 29767848942]\) \(11397810375/62748517\) \(-427836068310786018233077\) \([]\) \(12936000\) \(3.2165\)