Properties

Label 18150.co
Number of curves $4$
Conductor $18150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("co1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 18150.co have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18150.co do not have complex multiplication.

Modular form 18150.2.a.co

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} + q^{12} - 6 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 18150.co

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18150.co1 18150dc3 \([1, 0, 0, -1064863, 422860967]\) \(4824238966273/66\) \(1826922281250\) \([2]\) \(245760\) \(1.9087\)  
18150.co2 18150dc2 \([1, 0, 0, -66613, 6590717]\) \(1180932193/4356\) \(120576870562500\) \([2, 2]\) \(122880\) \(1.5621\)  
18150.co3 18150dc4 \([1, 0, 0, -36363, 12610467]\) \(-192100033/2371842\) \(-65654106021281250\) \([2]\) \(245760\) \(1.9087\)  
18150.co4 18150dc1 \([1, 0, 0, -6113, -3783]\) \(912673/528\) \(14615378250000\) \([2]\) \(61440\) \(1.2156\) \(\Gamma_0(N)\)-optimal