Properties

Label 178752.h
Number of curves $1$
Conductor $178752$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 178752.h1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752.h do not have complex multiplication.

Modular form 178752.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{9} - 3 q^{11} - 4 q^{13} + 3 q^{15} + 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 178752.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.h1 178752il1 \([0, -1, 0, -123937, 16843681]\) \(-669003004754/390963\) \(-123037569908736\) \([]\) \(860160\) \(1.6488\) \(\Gamma_0(N)\)-optimal