Properties

Label 17600cx
Number of curves $2$
Conductor $17600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17600cx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17600cx do not have complex multiplication.

Modular form 17600.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + 4 q^{7} + q^{9} - q^{11} - 5 q^{13} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 17600cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17600.s2 17600cx1 \([0, 1, 0, 3167, -21537]\) \(34295/22\) \(-2252800000000\) \([]\) \(34560\) \(1.0592\) \(\Gamma_0(N)\)-optimal
17600.s1 17600cx2 \([0, 1, 0, -36833, 3138463]\) \(-53969305/10648\) \(-1090355200000000\) \([]\) \(103680\) \(1.6085\)