Show commands: SageMath
Rank
The elliptic curves in class 1728f have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 1728f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 1728.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1728f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 1728.p2 | 1728f1 | \([0, 0, 0, 0, 32]\) | \(0\) | \(-442368\) | \([]\) | \(192\) | \(-0.23779\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
| 1728.p1 | 1728f2 | \([0, 0, 0, 0, -864]\) | \(0\) | \(-322486272\) | \([]\) | \(576\) | \(0.31151\) | \(-3\) |