Properties

Label 172480hj
Number of curves $2$
Conductor $172480$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 172480hj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 172480hj do not have complex multiplication.

Modular form 172480.2.a.hj

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + q^{9} + q^{11} - 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 172480hj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
172480.gl2 172480hj1 \([0, -1, 0, 5864, 53586]\) \(2961169856/1890625\) \(-14235529000000\) \([2]\) \(276480\) \(1.2129\) \(\Gamma_0(N)\)-optimal
172480.gl1 172480hj2 \([0, -1, 0, -24761, 463961]\) \(3484156096/1830125\) \(881919492608000\) \([2]\) \(552960\) \(1.5594\)