Show commands: SageMath
Rank
The elliptic curves in class 1690c have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 1690c do not have complex multiplication.Modular form 1690.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1690c
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1690.a1 | 1690c1 | \([1, 0, 1, -1694, 28056]\) | \(-658489/40\) | \(-32629228840\) | \([3]\) | \(1872\) | \(0.77226\) | \(\Gamma_0(N)\)-optimal |
1690.a2 | 1690c2 | \([1, 0, 1, 9291, 45632]\) | \(108750551/64000\) | \(-52206766144000\) | \([]\) | \(5616\) | \(1.3216\) |