Properties

Label 167310bl
Number of curves $1$
Conductor $167310$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 167310bl1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 167310bl do not have complex multiplication.

Modular form 167310.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} + q^{11} + q^{14} + q^{16} - 6 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 167310bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
167310.dt1 167310bl1 \([1, -1, 1, -62942873, 192246511097]\) \(-17218915986569071075813/2522559283200000\) \(-4040163741243801600000\) \([]\) \(22848000\) \(3.1603\) \(\Gamma_0(N)\)-optimal