Properties

Label 16731.k
Number of curves $4$
Conductor $16731$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16731.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16731.k do not have complex multiplication.

Modular form 16731.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 2 q^{5} - 4 q^{7} - 3 q^{8} - 2 q^{10} + q^{11} - 4 q^{14} - q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 16731.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16731.k1 16731k3 \([1, -1, 0, -222858, -40398539]\) \(347873904937/395307\) \(1390984039929627\) \([2]\) \(110592\) \(1.8191\)  
16731.k2 16731k2 \([1, -1, 0, -17523, -276080]\) \(169112377/88209\) \(310384868414049\) \([2, 2]\) \(55296\) \(1.4726\)  
16731.k3 16731k1 \([1, -1, 0, -9918, 379471]\) \(30664297/297\) \(1045066897017\) \([2]\) \(27648\) \(1.1260\) \(\Gamma_0(N)\)-optimal
16731.k4 16731k4 \([1, -1, 0, 66132, -2200145]\) \(9090072503/5845851\) \(-20570051733985611\) \([2]\) \(110592\) \(1.8191\)