Properties

Label 166518bx
Number of curves $4$
Conductor $166518$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 166518bx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 166518bx do not have complex multiplication.

Modular form 166518.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - q^{8} - 2 q^{10} + q^{11} + 2 q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 166518bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
166518.y4 166518bx1 \([1, -1, 0, 291249, -90315923]\) \(6300872423/11759616\) \(-5099277611404652544\) \([2]\) \(2580480\) \(2.2743\) \(\Gamma_0(N)\)-optimal
166518.y3 166518bx2 \([1, -1, 0, -2130831, -950154323]\) \(2467489596697/527529024\) \(228750406599105585216\) \([2, 2]\) \(5160960\) \(2.6209\)  
166518.y2 166518bx3 \([1, -1, 0, -10910871, 13043473429]\) \(331273336732057/22285827432\) \(9663718685680318278888\) \([2]\) \(10321920\) \(2.9675\)  
166518.y1 166518bx4 \([1, -1, 0, -32104071, -70002504635]\) \(8438952173768857/560166552\) \(242902893876070450968\) \([2]\) \(10321920\) \(2.9675\)