Properties

Label 164560.ca
Number of curves $4$
Conductor $164560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 164560.ca have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 164560.ca do not have complex multiplication.

Modular form 164560.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + 2 q^{7} + q^{9} - 2 q^{13} - 2 q^{15} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 164560.ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
164560.ca1 164560bo3 \([0, -1, 0, -8070256, -1733050944]\) \(8010684753304969/4456448000000\) \(32337385370943488000000\) \([2]\) \(12441600\) \(3.0096\)  
164560.ca2 164560bo1 \([0, -1, 0, -4943616, 4232314880]\) \(1841373668746009/31443200\) \(228161727836979200\) \([2]\) \(4147200\) \(2.4603\) \(\Gamma_0(N)\)-optimal
164560.ca3 164560bo2 \([0, -1, 0, -4788736, 4509735936]\) \(-1673672305534489/241375690000\) \(-1751497763848560640000\) \([2]\) \(8294400\) \(2.8068\)  
164560.ca4 164560bo4 \([0, -1, 0, 31579024, -13754712640]\) \(479958568556831351/289000000000000\) \(-2097074704384000000000000\) \([2]\) \(24883200\) \(3.3561\)