Properties

Label 1617.i
Number of curves $2$
Conductor $1617$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1617.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1617.i do not have complex multiplication.

Modular form 1617.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{8} + q^{9} - q^{11} - q^{12} - 4 q^{13} - q^{16} + 4 q^{17} + q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1617.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1617.i1 1617f2 \([1, 0, 1, -174466, -17340319]\) \(14553591673375/5208653241\) \(210187945886590287\) \([2]\) \(17920\) \(2.0248\)  
1617.i2 1617f1 \([1, 0, 1, 33049, -1901203]\) \(98931640625/96059601\) \(-3876351387330807\) \([2]\) \(8960\) \(1.6782\) \(\Gamma_0(N)\)-optimal