Properties

Label 15925.e
Number of curves $2$
Conductor $15925$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15925.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15925.e do not have complex multiplication.

Modular form 15925.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 3 q^{8} - 3 q^{9} - 3 q^{11} - q^{13} - q^{16} + 7 q^{17} + 3 q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15925.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15925.e1 15925h1 \([1, -1, 1, -131305, -18284178]\) \(-56723625/13\) \(-57377784953125\) \([]\) \(60480\) \(1.6316\) \(\Gamma_0(N)\)-optimal
15925.e2 15925h2 \([1, -1, 1, 769070, 757238822]\) \(11397810375/62748517\) \(-276951608811808328125\) \([]\) \(423360\) \(2.6046\)