Properties

Label 1560.g
Number of curves $4$
Conductor $1560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1560.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1560.g do not have complex multiplication.

Modular form 1560.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + q^{13} - q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1560.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1560.g1 1560e3 \([0, 1, 0, -1656, -26400]\) \(490757540836/2142075\) \(2193484800\) \([2]\) \(1536\) \(0.64532\)  
1560.g2 1560e2 \([0, 1, 0, -156, 0]\) \(1650587344/950625\) \(243360000\) \([2, 2]\) \(768\) \(0.29875\)  
1560.g3 1560e1 \([0, 1, 0, -111, 414]\) \(9538484224/26325\) \(421200\) \([4]\) \(384\) \(-0.047827\) \(\Gamma_0(N)\)-optimal
1560.g4 1560e4 \([0, 1, 0, 624, 624]\) \(26198797244/15234375\) \(-15600000000\) \([2]\) \(1536\) \(0.64532\)